MCDropout

model train feature -> ReconNet_dropout -> drop.feature cat[ drop.feature, init.feature] cat at dim=1 ReconNet_dropout dropout ​ shortcut = self.conv1(x) ​ shortcut.features = self.bn0(shortcut.features) ​ shortcut.features = self.act1(shortcut.features) ​ shortcut.features = self.dropout1(shortcut.features) eval metric ???predict_labels = torch.mean(outputs, dim=0, keepdim=True) uncertainty_scores = torch.var(outputs, dim=0, keepdim=True) uncertainty_scores = torch.mean(uncertainty_scores, dim=1)

十月 13, 2023 · 1 分钟 · 47 字 · Me

Pointcept

跳过train直接val 注释以下两个地方: 150到156行: 125到170行 Pointcept is a powerful and flexible codebase for point cloud perception research. It is also an official implementation of the following paper: Masked Scene Contrast: A Scalable Framework for Unsupervised 3D Representation Learning Xiaoyang Wu, Xin Wen, Xihui Liu, Hengshuang Zhao IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2023 [ Pretrain ] [ MSC ] - [ arXiv ] [ Bib ] → here...

八月 20, 2023 · 16 分钟 · 3329 字 · Me

DMLNet

Background & Method few-shot learning(doesn’t really matter in OOD task) Everything you need to know about Few-Shot Learning prototype clustering Apply in Stratified Transformer dmlnet method train crit = nn.NLLLoss(ignore_index=-1) CE_loss = self.crit(pred, feed_dict[‘seg_label’] batch_data -> feed_dict train.py->main net_encoder = ModelBuilder.build_encoder( arch=cfg.MODEL.arch_encoder.lower(), fc_dim=cfg.MODEL.fc_dim, weights=cfg.MODEL.weights_encoder) net_decoder = ModelBuilder.build_decoder( arch=cfg.MODEL.arch_decoder.lower(), fc_dim=cfg.MODEL.fc_dim, num_class=cfg.DATASET.num_class, weights=cfg.MODEL.weights_decoder) Where is prototype? No prototype in Loss Prototype should be in classifier( probability procedure ) self.centers should be prototypes why prototype is 3?...

七月 12, 2023 · 2 分钟 · 234 字 · Me

Stratified Transformer

sparse conv

四月 10, 2023 · 1 分钟 · 2 字 · Me

Open-world Semantic Segmentation for LIDAR Point Clouds

提出 REAL Related Work 传统 closed-set LIDAR语义分割 point-based methods: point-net / point-net++ 但是有性能限制 voxel-based methods: Cylinder3D,三维数据集SOTA,本文的base architecture Cylinder3D论文解读及代码略解 open-set 但是2D: uncertainty-based methods: generative model-based methods: Stochastic Gradient Langevin Dynamics (SGLD) Open-world Methodology REAL: Redundancy Classifier Framework Oseg: Open-set Semantic Segmentation 将模型从$\mathcal{M}_c$训练到$\mathcal{M}_o$ ,提出两个训练策略:Unknown Object Synthesis,Predictive Distribution Calibration Unknown Object Synthesis Predictive Distribution Calibration deep metric learning open-world 和 open-set 有何不同 不必太关注open-world 与 open-set 差异,但可以多留意生成式模型的后续研究 为什么uncertainty-based methods: the network predicts the novel classes as old classes with high confidence scores...

十月 4, 2022 · 1 分钟 · 124 字 · Me

Towards Open World Object Detection

论文链接: Abstract 提出: Open World Object Detection 问题 模型能够在无明确监督的情形下将无标签物体识别为’unknown' 当逐步输入相应的标签时,能够学习到已识别的’unknown’类别中去 Open World Object Detector ORE 基于Contrastive clustering和Energy based unknown identification 发现: we find that identifying and characterising unknown instances helps to reduce confusion in an incremental object detection setting, where we achieve state-ofthe-art performance, with no extra methodological effort. 我们发现识别和表征未知实例有助于减少incremental object detection设置中的混淆,在这种设置中我们实现了SOTA,而无需额外的方法论。 Intro 问题对比: Open set learning / Incremental Learning / Open world object Detection 方法 ORE Faster R-CNN 作为detector...

九月 23, 2022 · 1 分钟 · 124 字 · Me