MCDropout

model train feature -> ReconNet_dropout -> drop.feature cat[ drop.feature, init.feature] cat at dim=1 ReconNet_dropout dropout ​ shortcut = self.conv1(x) ​ shortcut.features = self.bn0(shortcut.features) ​ shortcut.features = self.act1(shortcut.features) ​ shortcut.features = self.dropout1(shortcut.features) eval metric ???predict_labels = torch.mean(outputs, dim=0, keepdim=True) uncertainty_scores = torch.var(outputs, dim=0, keepdim=True) uncertainty_scores = torch.mean(uncertainty_scores, dim=1)

十月 13, 2023 · 1 分钟 · 47 字 · Me

Pointcept

跳过train直接val 注释以下两个地方: 150到156行: 125到170行 Pointcept is a powerful and flexible codebase for point cloud perception research. It is also an official implementation of the following paper: Masked Scene Contrast: A Scalable Framework for Unsupervised 3D Representation Learning Xiaoyang Wu, Xin Wen, Xihui Liu, Hengshuang Zhao IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2023 [ Pretrain ] [ MSC ] - [ arXiv ] [ Bib ] → here...

八月 20, 2023 · 16 分钟 · 3329 字 · Me

DMLNet

Background & Method few-shot learning(doesn’t really matter in OOD task) Everything you need to know about Few-Shot Learning prototype clustering Apply in Stratified Transformer dmlnet method train crit = nn.NLLLoss(ignore_index=-1) CE_loss = self.crit(pred, feed_dict[‘seg_label’] batch_data -> feed_dict train.py->main net_encoder = ModelBuilder.build_encoder( arch=cfg.MODEL.arch_encoder.lower(), fc_dim=cfg.MODEL.fc_dim, weights=cfg.MODEL.weights_encoder) net_decoder = ModelBuilder.build_decoder( arch=cfg.MODEL.arch_decoder.lower(), fc_dim=cfg.MODEL.fc_dim, num_class=cfg.DATASET.num_class, weights=cfg.MODEL.weights_decoder) Where is prototype? No prototype in Loss Prototype should be in classifier( probability procedure ) self.centers should be prototypes why prototype is 3?...

七月 12, 2023 · 2 分钟 · 234 字 · Me

ViT

划分Patch:为了减少序列长度,按像素计算长度过长,将16x16的Patch作为一个元素,生成序列 Transformer vs. CNN: Transformer相比卷积缺少归纳偏置(inductive biases, 先验知识或者先验假设) CNN的inductive biases Locality 局部性 translation equivalence 平移不变性 Transformer在大规模数据集上预训练,可以达到归纳偏置d

四月 16, 2023 · 1 分钟 · 15 字 · Me

Stratified Transformer

sparse conv

四月 10, 2023 · 1 分钟 · 2 字 · Me

Swin

层级式 Shift Window 在小窗口上计算self attention patch merging 类似于 max pooling transformer 目的:更好理解上下文 主要对比:ViT ​ 实现了多尺寸的特征

四月 10, 2023 · 1 分钟 · 15 字 · Me

Open-world Semantic Segmentation for LIDAR Point Clouds

提出 REAL Related Work 传统 closed-set LIDAR语义分割 point-based methods: point-net / point-net++ 但是有性能限制 voxel-based methods: Cylinder3D,三维数据集SOTA,本文的base architecture Cylinder3D论文解读及代码略解 open-set 但是2D: uncertainty-based methods: generative model-based methods: Stochastic Gradient Langevin Dynamics (SGLD) Open-world Methodology REAL: Redundancy Classifier Framework Oseg: Open-set Semantic Segmentation 将模型从$\mathcal{M}_c$训练到$\mathcal{M}_o$ ,提出两个训练策略:Unknown Object Synthesis,Predictive Distribution Calibration Unknown Object Synthesis Predictive Distribution Calibration deep metric learning open-world 和 open-set 有何不同 不必太关注open-world 与 open-set 差异,但可以多留意生成式模型的后续研究 为什么uncertainty-based methods: the network predicts the novel classes as old classes with high confidence scores...

十月 4, 2022 · 1 分钟 · 124 字 · Me

Towards Open World Object Detection

论文链接: Abstract 提出: Open World Object Detection 问题 模型能够在无明确监督的情形下将无标签物体识别为’unknown' 当逐步输入相应的标签时,能够学习到已识别的’unknown’类别中去 Open World Object Detector ORE 基于Contrastive clustering和Energy based unknown identification 发现: we find that identifying and characterising unknown instances helps to reduce confusion in an incremental object detection setting, where we achieve state-ofthe-art performance, with no extra methodological effort. 我们发现识别和表征未知实例有助于减少incremental object detection设置中的混淆,在这种设置中我们实现了SOTA,而无需额外的方法论。 Intro 问题对比: Open set learning / Incremental Learning / Open world object Detection 方法 ORE Faster R-CNN 作为detector...

九月 23, 2022 · 1 分钟 · 124 字 · Me

CLIP

OpenAI CLIP 官方文档 zero-shot 基于图像文本对 学习 语义信号 模型过大,为加速训练采用很多加速技术:How to Train Really Large Models on Many GPUs prompt engineering 作者提出在对比学习中再结合生成式的目标函数,或许可以扩大模型的灵活性,不受限于输入文本数据的标签 主要影响:摆脱了原有训练数据 固定类别 的范式 Question fine-tune / linear porbe logistic regression

九月 21, 2022 · 1 分钟 · 29 字 · Me

GPT

特征 self-supervised learning 基于transformer BERT 与 GPT ​ BERT使用编码器而GPT使用解码器(Transformer) ->GPT2 ​ 提出zero-shot ->GPT3 ​ 用few-shot ​ 在做子任务时,不需要微调,不需计算重新更新梯度 Question: zero-shot 为什么大模型不容易过拟合? (为什么:在大模型中不需要像较小模型一样选择较小的Batch_Size来使每次采样时数据中的噪音增多来避免过拟合)

九月 21, 2022 · 1 分钟 · 21 字 · Me

GNN

九月 18, 2022 · 0 分钟 · 0 字 · Me

-how

阅读顺序

九月 17, 2022 · 1 分钟 · 1 字 · Me